Calculation and control software for process and transport applications

About Company

Processline/Flowmeasurement/Small report     

 
COMPUTERCALCULATION OF THROATDEVICE FOR FLOWMEASUREMENT IN TUBES
ACCORDING STANDARD ISO 5167-1 & 2 from 2003
Date: 2010-02-05 /Time: 23:57:56
Computerprogram; Processline.0911/Windows from MATEMATICA
Tel: +46-(0)708-387910, e-mail:
mail@matematica.se
copyright (c) 1995,2009 Stefan Rudbäck, Matematica, Sweden
Calculation done by Matematica
__________________INPUT______________________ 
ISO5167:2003 Differential pressure kPa 1.Orifice plate, Corner tappings
Media:  Saturated steam
Static Pressure? (at + Pressure tapping)___________(kPa)    289
Material throat =Steel 5:1.4301:1.4401:1.4541:1.4550:1.4571:1.4580:1.4910:1.4919
Material tube =Steel 1:1.0037:1.0038:1.0254:1.0345:1.0425:1.0460:1.5415:1.7335
Interior tubediameter cold (=20 C)?_________________(mm)  392,8
Mean radius rk of unsharp inlet edge of orifice?____(mm)      0
Pipe roughness k?___________________________________(mm)    0,1
Maximal flow?____________________________________(ton/h)     35
Minimal flow?____________________________________(ton/h)    3,5
Throatdiameter d cold (20 C)?_______________________(mm) 201,04

__________________OUTPUT_____________________
NOTE! CALCULATIONRESULT OUTSIDE STANDARDLIMITS
DIFFPRESSURE TO BIG
MAXLIMIT (kPa)= 72,250
Simpliest possible flowcalculation*;q:=35,000*sqrt(dp/90,696)
(*Optimized for; (at operating cond.= 132,27 C, 289 kPa))
(*for mathematical error see big report)
Maximal Differential Pressure(not=P-loss)____(kPa)= 90,696
Adjusted maxflow for square root function_________= 37,214
Note: Used to minimize calculation error at normalflow=0.67*maxflow
Pressureloss at maxflow (not=diff. pressure)_(kPa)= 65,431
Pressureloss at minflow (not=diff. pressure)_(kPa)= 0,5353
Flow speed in tube (at maxfllow)_____________(m/s)= 50,169
Reynolds number (at maximal flow)_________________= 2,3489E6
Maxflowlimit of the standard________(% of maxflow)= 91,191
Minflowlimit of the standard________(% of maxflow)= 0,2129
Temperature____________________________________(C)= 132,27
Density____________________________________(kg/m3)= 1,5945
Dynamic viscosity________________________(Pas*E-6)= 13,397
Kappa (Isentropic expansioncoeff.)________________= 1,3145
Epsilon (at maxflow)______________________________= 0,9071
Alfa (=C*E) (at normalflow)_______________________= 0,6256
C (at normal flow)________________________________= 0,6037
Beta (d/D) at operating conditions________________= 0,5121
Area ratio (beta*beta) at operating conditions____= 0,2622

 

 The following table shows shortest possible straight tube length between different
 disturbancies and the upstream pressure tapping of the throat device.
 The disturbancies are upstreams but not for the last table line,
 which shows the length between downstream pressure tapping and disturbance.
 Two lengths are specified, for 0% and 0.5% flowmeasurement error contribution.
                                                            ADDITIONAL ERROR
 (Measured from upstream pressure tapping)                 0%             0.5%
 DISTURBANCE                                               STRAIGHT LENGTH (m)
 One(/two, separation>30D) 90 degrre Bend                  16,5.......... 5,11
 Two 90 degrees bends in the same plane (separation>10D)   11,8.......... 7,08
 Two 90 degrees bends in the same plane (separation<10D)   16,5.......... 7,08
 Two 90 degrees bends in different planes (separation>5D)  17,3.......... 7,08
 Two 90 degrees bends in different planes (separation<5D)  37,4..........  9,8
 90 degree Tee with or without extension                   11,4.......... 7,08
 One(/Two 45 degree bends separated>2D) in the same plane  11,8.......... 7,08
 Concentric reducer 2D/D over a length of= 1.5D - 3D       3,54.......... 1,97
 Concentric expander 0.5D/D over a length of= 1D - 2D      10,2.......... 4,33
 Full bore ball valve or gate valve fully open             5,51.......... 2,75
 Globe valve fully open (ISO 5167:1991)                    9,44.......... 4,72
 Open large vessel                                         11,8
 Abrupt symmetrical reduction                              11,8.......... 5,90
 Thermometer pocket < 3% of tube diameter                  1,97.......... 1,18
 Thermometer pocket >3% & <13% of tubediameter             7,87.......... 3,93
 All fittings downstream*                                  2,75.......... 1,38
 (*Measured from downstream pressure tapping)
 (Only 0.5% additional uncertainty upstreams OR downstreams, NOT BOTH!)


 

Error-/Uncertainty calculation

ERROR/UNCERTAINTYSOURCE              SIZE         IMPACT ON FLOWMEASUREUNCERTAINTY (%)
Flow in % of maxflow_________________      10,0 20,0 30,0 40,0 50,0 60,0 70,0 80,0 90,0  100   mv
Other ERRORS % actual Flow                 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
Other UNCERTAINTIES % actual Flow          0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
Total uncertainty % of actual Flow___      6,05 1,77 1,09 0,92 0,87 0,87 0,90 0,96 1,05 1,18 1,26

 

Processline/Graphs

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Processline/Flowmeasurement/Big report


COMPUTERCALCULATION OF THROATDEVICE FOR FLOWMEASUREMENT IN TUBES
ACCORDING STANDARD ISO 5167-1 & 2 from 2003
Date: 2010-02-06 /Time: 00:00:31
Computerprogram; Processline.0911/Windows from MATEMATICA
Tel: +46-(0)708-387910, e-mail:
mail@matematica.se

skype; stefan.rudback
copyright (c) 1995,2009 Stefan Rudbäck, Matematica, Sweden
Calculation done by Matematica
__________________INPUT______________________
ISO5167:2003 Differential pressure kPa 1.Orifice plate, Corner tappings
Media:  Saturated steam
Static Pressure? (at + Pressure tapping)___________(kPa)    289
Material throat =Steel 5:1.4301:1.4401:1.4541:1.4550:1.4571:1.4580:1.4910:1.4919
1st order expansionfactor________________________(E-6/C)     17
2nd order______________________________________ (E-6/C2) 0,0038
Material tube =Steel 1:1.0037:1.0038:1.0254:1.0345:1.0425:1.0460:1.5415:1.7335
1st order expansionfactor________________________(E-6/C)   12,6
2nd order______________________________________ (E-6/C2) 0,0043

Interior tubediameter cold (=20 C)?_________________(mm)  392,8
Mean radius rk of unsharp inlet edge of orifice?____(mm)      0
Pipe roughness k?___________________________________(mm)    0,1
Maximal flow?____________________________________(ton/h)     35
Minimal flow?____________________________________(ton/h)    3,5
Throatdiameter d cold (20 C)?_______________________(mm) 201,04
Upstream fitting: 1. One(/two, separation>30D) 90 degrre Bend                
Pos.of fitting upstream (from upstream press.tapp.)?_(m)     10
Pos.of fitt.downstream (from downstream press.tapp.)?(m)     10

__________________OUTPUT_____________________
NOTE! CALCULATIONRESULT OUTSIDE STANDARDLIMITS
DIFFPRESSURE TO BIG
MAXLIMIT (kPa)= 72,250
                  MAIN RESULT
Maximal Differential Pressure(not=P-loss)____(kPa)= 90,696

Table; Relation btw flow and differential pressure
(at operating cond.= 132,27 C, 289 kPa)
flow 3,5000 7,0000 10,500 14,000 17,500 21,000 24,500 28,000 31,500 35,000
dp   0,7420 2,9900 6,7874 12,208 19,364 28,419 39,613 53,297 70,019 90,696

                  MOUNTING IN TUBE
Max eccentricity tube/throat 0% add. error____(mm)= 3,8099
Max eccentricity for 0.3% additional error____(mm)= 7,6197
Maximal angle tube/throat_________________________=1 DEGREE

           CONFIGURATION OF dp-TRANSMITTER
1.Linear dp-transmitter
(used for very good precision from >=50 to 100% flow)
Adjust the transmitter for max signal 20 mA at maximal diff. pressure= 90,696 kPa
Then calculate the flow with flowcalculation-method 1,2 or 3 below

 

2.Square-root dp-transm. (used for good precision from <50 to 100% flow)

2.1.Best precision at normal flow=67%*maxflow;
Adjust the transmitter for max signal 20 mA by adjusted maxflow=
37,214 ton/h= 90,696 kPa

2.2.Best precision at maxflow;
Adjust the transmitter for max signal 20 mA at
35,000 ton/h= 90,696 kPa

2.3.Best precision at all flows
Adjust the transmitter for max signal 20 mA at
35,000 ton/h= 90,696 kPa
Then improve the flowvalue in computer with
adjustment functions fmat and fdens(/fdens_mat) according pos 3 & 4 below.

                        1 OR 2 dp-transmitters?
1.Average additional Uncertainty with 1 dp-cell  (% of maximal flow)= 0,129
2.Average additional Uncertainty with 2 dp-cells (% of maximal flow)= 0,062
(If the Uncertainty of the dp-transmitters = 0.1% of span)
3. Optimal limit between small and big dp-transmitter   (% av maximal dp)= 30,5
4. Optimal limit between small and big dp-transmitter (% av maximal flow)= 55,3
5. Configuration of small dp-transmitter; 20 mA=
27,704 kPa =(pos 2.1) 20,568 (2.2) 19,344 (2.3) 19,344 ton/h
(If the Uncertainty of the dp-transmitters are equal (in % of span)

 

 SOME FLOWCALCULATIONALGORITHMS WITH UNCERTAINTIES*
*(at operating cond.= 132,27 C, 289 kPa)
*(NOTE! Sqrt calculation of flow in dp-cell OR computer, NOT BOTH!)
Average standard uncertainty btw. min- & maxflow__(%)= 0,6

 

1.Avg. standard unc. + calculation error in calculation algorithm 1;
q_rot_normal= 3,90767*sqrt(dp) < 3,4 %
Used for best Precision at Normal flow=67%*Maximal flow.

 

2.Avg. standard unc. + Calc. error in Calculation algorithm 2;
q_rot_max= 3,67514*sqrt(dp) < 6,6 %
Used for best Precision at Maximal flow.

 

3.Avg. standard unc. + Calculation error in calculation algorithm 3;
q_pol_mat=q_rot_mat*fmat < 0,7 %
where q_rot_mat= 3,67514*Sqrt(dp)
where fmat(q_rot_mat)=(1-0,76840E-4*q_rot_mat**2*289,000/(P*1.00000))/0,90587*(1+0,65830E-2/q_rot_mat**(3/4))/1,00046
(Where ** = raised to)
Used for best Precision at all flows

 

(*
KODFABRIKEN;Generation of standardised code, IEC61131, ST, f ex ABB Industrial IT
Copyright (c) 2009 Matematica,
mail@matematica.se, +46-(0)708-387910
Scaling; 20 mA from dp-cell= 90.6958 kPa= 20 mA to control system
1.Calculation error<=0,0% av beräknat flödesvärde q_pol_mat_PT
For;3,50000 <q_pol_mat_PT< 35,0000
    289,000 <P< 289,000
    T= 132,273533677539
2.Parameters
dpcell real  in  kPa,=dp-signal from dp-transmitter, linear or sqrt-calculated
dp_max real  in 90.6958 kPa=20 mA
dp_rot bool  in 0 0=linear dp-cell/1=square root dp-cell
q_pol_mat_PT real  out  ton/h,PT compensated & polynom calculated flowsignal,use this
3.Variables
q_pol_mat real   ton/h,polynom calculated flow,not to be used
q_rot_mat real   ton/h,sqrt-calculated flow, not to be used
fmat real
dp real   kPa,=calculated dp = dpcell at linear dp-tarnsm.
4.Code
*)
dp:=dpcell;
if dp_rot then
 dp:=dpcell*dpcell/dp_max/dp_max*dp_max;
end_if;
q_rot_mat:=3.67514*Sqrt(dp);
fmat:=(1-0.76840E-4*expt(q_rot_mat,2)*289.000/(P*1.00000))/0.90587*(1+0.65830E-2/expt(q_rot_mat,0.75))/1.00046;
q_pol_mat:=q_rot_mat*fmat;
(*simple Pressure/temp-correction of density, advanced see Density calculations*)
q_pol_mat_PT:=q_pol_mat*sqrt(P*1.00000/289.000*(273.15+132.274)/(273.15+T));


                   FLOWREPORT
Adjusted maxflow for square root function_________= 37,214
Note: Used to minimize calculation error at normalflow=0.67*maxflow
Pressureloss at maxflow (not=diff. pressure)_(kPa)= 65,431
Pressureloss at minflow (not=diff. pressure)_(kPa)= 0,5353
Power loss at maxflow_________________________(kW)= 398,96
Flow speed in tube (at maxfllow)_____________(m/s)= 50,169
Flowspeed in throat (at maxflow)_____________(m/s)= 214,12
Flowspeed in vena contracta (at maxflow)_____(m/s)>SOUNDLIMIT!
(CRITICAL FLOW= 79,4 % of maxflow)
Reynolds number (at maximal flow)_________________= 2,3489E6
Maxflowlimit of the standard________(% of maxflow)= 91,191
Minflowlimit of the standard________(% of maxflow)= 0,2129

                   PHYSICS REPORT
Temperature____________________________________(C)= 132,27
Density____________________________________(kg/m3)= 1,5945
Dynamic viscosity________________________(Pas*E-6)= 13,397
Kappa (Isentropic expansioncoeff.)________________= 1,3145
Temperature correction factor of throatdiameter___= 1,0020
Temperature correction factor of tubesize_________= 1,0015

                   STANDARD REPORT
Epsilon (at maxflow)______________________________= 0,9071
Alfa (=C*E) (at normalflow)_______________________= 0,6256
C (at normal flow)________________________________= 0,6037
Beta (d/D) at operating conditions________________= 0,5121
Area ratio (beta*beta) at operating conditions____= 0,2622

 

 The following table shows shortest possible straight tube length between different
 disturbancies and the upstream pressure tapping of the throat device.
 The disturbancies are upstreams but not for the last table line,
 which shows the length between downstream pressure tapping and disturbance.
 Two lengths are specified, for 0% and 0.5% flowmeasurement error contribution.
                                                           ADDITIONAL ERROR
 (Measured from upstream pressure tapping)                 0%             0.5%
 DISTURBANCE                                               STRAIGHT LENGTH (m)
 One(/two, separation>30D) 90 degrre Bend                  16,5.......... 5,11
 Two 90 degrees bends in the same plane (separation>10D)   11,8.......... 7,08
 Two 90 degrees bends in the same plane (separation<10D)   16,5.......... 7,08
 Two 90 degrees bends in different planes (separation>5D)  17,3.......... 7,08
 Two 90 degrees bends in different planes (separation<5D)  37,4..........  9,8
 90 degree Tee with or without extension                   11,4.......... 7,08
 One(/Two 45 degree bends separated>2D) in the same plane  11,8.......... 7,08
 Concentric reducer 2D/D over a length of= 1.5D - 3D       3,54.......... 1,97
 Concentric expander 0.5D/D over a length of= 1D - 2D      10,2.......... 4,33
 Full bore ball valve or gate valve fully open             5,51.......... 2,75
 Globe valve fully open (ISO 5167:1991)                    9,44.......... 4,72
 Open large vessel                                         11,8
 Abrupt symmetrical reduction                              11,8.......... 5,90
 Thermometer pocket < 3% of tube diameter                  1,97.......... 1,18
 Thermometer pocket >3% & <13% of tubediameter             7,87.......... 3,93
 All fittings downstream*                                  2,75.......... 1,38
 (*Measured from downstream pressure tapping)
 (Only 0.5% additional uncertainty upstreams OR downstreams, NOT BOTH!)

Error-/Uncertainty calculation

Standard/Flowcalculationmethod 1/2/3?___________________(S/1/2/3) S
ERROR/UNCERTAINTYSOURCE              SIZE         IMPACT ON FLOWMEASUREUNCERTAINTY (%)
Flow in % of maxflow_________________      10,0 20,0 30,0 40,0 50,0 60,0 70,0 80,0 90,0  100   mv
Standard uncertainty                       0,50 0,50 0,50 0,51 0,53 0,56 0,62 0,70 0,82 0,98 0,61
Flow calculation mathematical error        0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
dp-transmitter % of maxdp             0,10 5,89 1,49 0,65 0,36 0,22 0,15 0,10 0,07 0,05 0,04 0,59
dp-transmitter % of act. dp           0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
Square root function in dp-transm.(Y/    J                                                      
Control system A/D conversion % of sp 0,10 1,10 0,55 0,36 0,27 0,21 0,17 0,14 0,11 0,10 0,08 0,27
Control system A/D conversion % of ac 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
Throat diameter (mm)                  0,01 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
Inlet edge radius (mm)                0,10 0,28 0,28 0,28 0,28 0,28 0,28 0,28 0,28 0,28 0,28 0,28
Tube diameter (mm)                    1,00 -0,0 -0,0 -0,0 -0,0 -0,0 -0,0 -0,0 -0,0 -0,0 -0,0 0,04
Tube roughness (mm)                   0,05 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01
Density Table uncertainty (% of actua 1,00 0,50 0,50 0,50 0,50 0,50 0,50 0,50 0,50 0,50 0,50 0,50
Density calculation error (% of actua 0,10 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05
Viscosity (% of actual)               1,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
Kappa (% of actual)                   1,00 0,00 0,00 0,01 0,01 0,02 0,03 0,04 0,05 0,07 0,09 0,03
Media static pressure (% of actual)   0,10 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05
Media static temp (C)                 0,10 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
Other ERRORS % actual Flow                 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
Other UNCERTAINTIES % actual Flow          0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
Total uncertainty % of actual Flow___      6,05 1,77 1,09 0,92 0,87 0,87 0,90 0,96 1,05 1,18 1,26

 


 

 

Processline/Flowmeasurement/Kodfabriken/Bigblock

Automatic codegeneration for control systems

 

mail@matematica.se

 

Example 1; Simple steam flow calculation;

"Blindtarm" with IEC 61131 code 

1.P and T compensation with compressibility factors

kompminmin:=1.0;

kompmaxmin:=1.0;

kompminmax:=1.0;

kompmaxmax:=1.0;

PkPa:=P*1.00000;

Tmax:=150.000;

Tmin:=140.000;

Pmax:=300.000;

Pmin:=270.000;

kompminmax:=1.00326;

kompmaxmax:=0.99992;

kompminmin:=1.00003;

kompmaxmin:=0.99707;

kvot:=(kompminmin*(Tmax-T)*(Pmax-PkPa)+kompmaxmin*(T-Tmin)*(Pmax-PkPa)

+kompminmax*(Tmax-T)*(PkPa-Pmin)+kompmaxmax*(T-Tmin)*(PkPa-Pmin))/(Tmax-Tmin)/(Pmax-Pmin);

fdens_mat:=sqrt(PkPa/285.000*418.150/(T+273.15)*kvot);

2.linearisation of square root calculated output from dp-transmitter;

OBS! 20 mA=100 (kPa) i både dp-cell och styrsystem.

if dp_rot then

    dp:=dpcell*dpcell/dp_max/dp_max*dp_max;

end_if;

3.Square root calculation of flow;

q_rot_mat:=3.64183*Sqrt(dp);

4.Polynomial calculation of flow with Matematica algoritm;

fmat:=(1-0.79198E-4*expt(q_rot_mat,2)*285.000/(P*1.00000))/0.91962

*(1+0.48334E-2/expt(q_rot_mat,0.75))/1.00037;

q_pol_mat:=q_rot_mat*fmat;

5.*fdens_mat

q_pol_mat_PT:=q_pol_mat*fdens_mat;

 

Example 2; Advanced steam flow calculation;

with IEC 61131 code 

 

KODFABRIKEN/Bigblock;

Production of standardized control system code (IEC 61131).

 

1.Calculation error<0,1% of calculated flowvalue q_pol_mat_PT

For; 7,63668 <q_pol_mat_PT< 76,3668

     4900,00 <P(kPaA)     < 6900,00

     350,000 <T(C)        < 550,000

Scaling; 20 mA from dp-transmitter= 141.300 kPa= 20 mA to controlsystem

Copyright (c) 2009 Matematica, mail@matematica.se, +46-(0)708-387910

The following defines Parameters,variables and code for ABB Industrial IT

for ex ControlBuilder and AC800M.

 

2.Parameters;

P real in 5.90000 MPa

T real in 450.000 C

densitet real out kg/m3

dpcell real in kPa,=signal from dp-transm, linear or square root calculated

dp_max real in 141.300 kPa=20 mA

dp_rot bool in 0 0=linear dp-transm/1=root calc dp-transm

q_pol_mat_PT real out kg/s,PT kompensated and polynomial calc flow

 

3.Variables;

q_pol_mat real kg/s,don't use

q_rot_mat real kg/s,don't use

fmat real

dp real kPa,=calc dp = dp transm at linear dp-signal

fdens_mat real

kvot real

PkPa real

Tmax real

Tmin real

Pmax real

Pmin real

kompminmax real

kompmaxmax real

kompminmin real

kompmaxmin real

 

4.Code as structured text ST

kompminmin:=1.0;

kompmaxmin:=1.0;

kompminmax:=1.0;

kompmaxmax:=1.0;

PkPa:=P*1000.00;

IF T<372.222 then

IF PkPa<5122.22 then

Tmax:=372.222;

Tmin:=350.000;

Pmax:=5122.22;

Pmin:=4900.00;

kompminmax:=1.04155;

kompmaxmax:=1.02551;

kompminmin:=1.03601;

kompmaxmin:=1.02101;

ELSIF PkPa<5344.44 then

Tmax:=372.222;

Tmin:=350.000;

Pmax:=5344.44;

Pmin:=5122.22;

kompminmax:=1.04720;

kompmaxmax:=1.03009;

kompminmin:=1.04155;

kompmaxmin:=1.02551;

ELSIF PkPa<5566.67 then

Tmax:=372.222;

Tmin:=350.000;

Pmax:=5566.67;

Pmin:=5344.44;

kompminmax:=1.05299;

kompmaxmax:=1.03476;

kompminmin:=1.04720;

kompmaxmin:=1.03009;

ELSIF PkPa<5788.89 then

Tmax:=372.222;

Tmin:=350.000;

Pmax:=5788.89;

Pmin:=5566.67;

kompminmax:=1.05889;

kompmaxmax:=1.03950;

kompminmin:=1.05299;

kompmaxmin:=1.03476;

ELSIF PkPa<6011.11 then

Tmax:=372.222;

Tmin:=350.000;

Pmax:=6011.11;

Pmin:=5788.89;

kompminmax:=1.06493;

kompmaxmax:=1.04434;

kompminmin:=1.05889;

kompmaxmin:=1.03950;

ELSIF PkPa<6233.33 then

Tmax:=372.222;

Tmin:=350.000;

Pmax:=6233.33;

Pmin:=6011.11;

kompminmax:=1.07111;

kompmaxmax:=1.04926;

kompminmin:=1.06493;

kompmaxmin:=1.04434;

ELSIF PkPa<6455.56 then

Tmax:=372.222;

Tmin:=350.000;

Pmax:=6455.56;

Pmin:=6233.33;

kompminmax:=1.07743;

kompmaxmax:=1.05427;

kompminmin:=1.07111;

kompmaxmin:=1.04926;

ELSIF PkPa<6677.78 then

Tmax:=372.222;

Tmin:=350.000;

Pmax:=6677.78;

Pmin:=6455.56;

kompminmax:=1.08390;

kompmaxmax:=1.05937;

kompminmin:=1.07743;

kompmaxmin:=1.05427;

ELSE

Tmax:=372.222;

Tmin:=350.000;

Pmax:=6900.00;

Pmin:=6677.78;

kompminmax:=1.09051;

kompmaxmax:=1.06457;

kompminmin:=1.08390;

kompmaxmin:=1.05937;

end_if;

ELSIF T<394.444 then

IF PkPa<5122.22 then

Tmax:=394.444;

Tmin:=372.222;

Pmax:=5122.22;

Pmin:=4900.00;

kompminmax:=1.02551;

kompmaxmax:=1.01296;

kompminmin:=1.02101;

kompmaxmin:=1.00922;

ELSIF PkPa<5344.44 then

Tmax:=394.444;

Tmin:=372.222;

Pmax:=5344.44;

Pmin:=5122.22;

kompminmax:=1.03009;

kompmaxmax:=1.01676;

kompminmin:=1.02551;

kompmaxmin:=1.01296;

ELSIF PkPa<5566.67 then

Tmax:=394.444;

Tmin:=372.222;

Pmax:=5566.67;

Pmin:=5344.44;

kompminmax:=1.03476;

kompmaxmax:=1.02061;

kompminmin:=1.03009;

kompmaxmin:=1.01676;

ELSIF PkPa<5788.89 then

Tmax:=394.444;

Tmin:=372.222;

Pmax:=5788.89;

Pmin:=5566.67;

kompminmax:=1.03950;

kompmaxmax:=1.02451;

kompminmin:=1.03476;

kompmaxmin:=1.02061;

ELSIF PkPa<6011.11 then

Tmax:=394.444;

Tmin:=372.222;

Pmax:=6011.11;

Pmin:=5788.89;

kompminmax:=1.04434;

kompmaxmax:=1.02847;

kompminmin:=1.03950;

kompmaxmin:=1.02451;

ELSIF PkPa<6233.33 then

Tmax:=394.444;

Tmin:=372.222;

Pmax:=6233.33;

Pmin:=6011.11;

kompminmax:=1.04926;

kompmaxmax:=1.03249;

kompminmin:=1.04434;

kompmaxmin:=1.02847;

ELSIF PkPa<6455.56 then

Tmax:=394.444;

Tmin:=372.222;

Pmax:=6455.56;

Pmin:=6233.33;

kompminmax:=1.05427;

kompmaxmax:=1.03657;

kompminmin:=1.04926;

kompmaxmin:=1.03249;

ELSIF PkPa<6677.78 then

Tmax:=394.444;

Tmin:=372.222;

Pmax:=6677.78;

Pmin:=6455.56;

kompminmax:=1.05937;

kompmaxmax:=1.04072;

kompminmin:=1.05427;

kompmaxmin:=1.03657;

ELSE

Tmax:=394.444;

Tmin:=372.222;

Pmax:=6900.00;

Pmin:=6677.78;

kompminmax:=1.06457;

kompmaxmax:=1.04492;

kompminmin:=1.05937;

kompmaxmin:=1.04072;

end_if;

ELSIF T<416.667 then

IF PkPa<5122.22 then

Tmax:=416.667;

Tmin:=394.444;

Pmax:=5122.22;

Pmin:=4900.00;

kompminmax:=1.01296;

kompmaxmax:=1.00289;

kompminmin:=1.00922;

kompmaxmin:=0.99974;

ELSIF PkPa<5344.44 then

Tmax:=416.667;

Tmin:=394.444;

Pmax:=5344.44;

Pmin:=5122.22;

kompminmax:=1.01676;

kompmaxmax:=1.00609;

kompminmin:=1.01296;

kompmaxmin:=1.00289;

ELSIF PkPa<5566.67 then

Tmax:=416.667;

Tmin:=394.444;

Pmax:=5566.67;

Pmin:=5344.44;

kompminmax:=1.02061;

kompmaxmax:=1.00932;

kompminmin:=1.01676;

kompmaxmin:=1.00609;

ELSIF PkPa<5788.89 then

Tmax:=416.667;

Tmin:=394.444;

Pmax:=5788.89;

Pmin:=5566.67;

kompminmax:=1.02451;

kompmaxmax:=1.01259;

kompminmin:=1.02061;

kompmaxmin:=1.00932;

ELSIF PkPa<6011.11 then

Tmax:=416.667;

Tmin:=394.444;

Pmax:=6011.11;

Pmin:=5788.89;

kompminmax:=1.02847;

kompmaxmax:=1.01590;

kompminmin:=1.02451;

kompmaxmin:=1.01259;

ELSIF PkPa<6233.33 then

Tmax:=416.667;

Tmin:=394.444;

Pmax:=6233.33;

Pmin:=6011.11;

kompminmax:=1.03249;

kompmaxmax:=1.01925;

kompminmin:=1.02847;

kompmaxmin:=1.01590;

ELSIF PkPa<6455.56 then

Tmax:=416.667;

Tmin:=394.444;

Pmax:=6455.56;

Pmin:=6233.33;

kompminmax:=1.03657;

kompmaxmax:=1.02264;

kompminmin:=1.03249;

kompmaxmin:=1.01925;

ELSIF PkPa<6677.78 then

Tmax:=416.667;

Tmin:=394.444;

Pmax:=6677.78;

Pmin:=6455.56;

kompminmax:=1.04072;

kompmaxmax:=1.02608;

kompminmin:=1.03657;

kompmaxmin:=1.02264;

ELSE

Tmax:=416.667;

Tmin:=394.444;

Pmax:=6900.00;

Pmin:=6677.78;

kompminmax:=1.04492;

kompmaxmax:=1.02955;

kompminmin:=1.04072;

kompmaxmin:=1.02608;

end_if;

ELSIF T<438.889 then

IF PkPa<5122.22 then

Tmax:=438.889;

Tmin:=416.667;

Pmax:=5122.22;

Pmin:=4900.00;

kompminmax:=1.00289;

kompmaxmax:=0.99464;

kompminmin:=0.99974;

kompmaxmin:=0.99194;

ELSIF PkPa<5344.44 then

Tmax:=438.889;

Tmin:=416.667;

Pmax:=5344.44;

Pmin:=5122.22;

kompminmax:=1.00609;

kompmaxmax:=0.99737;

kompminmin:=1.00289;

kompmaxmin:=0.99464;

ELSIF PkPa<5566.67 then

Tmax:=438.889;

Tmin:=416.667;

Pmax:=5566.67;

Pmin:=5344.44;

kompminmax:=1.00932;

kompmaxmax:=1.00012;

kompminmin:=1.00609;

kompmaxmin:=0.99737;

ELSIF PkPa<5788.89 then

Tmax:=438.889;

Tmin:=416.667;

Pmax:=5788.89;

Pmin:=5566.67;

kompminmax:=1.01259;

kompmaxmax:=1.00290;

kompminmin:=1.00932;

kompmaxmin:=1.00012;

ELSIF PkPa<6011.11 then

Tmax:=438.889;

Tmin:=416.667;

Pmax:=6011.11;

Pmin:=5788.89;

kompminmax:=1.01590;

kompmaxmax:=1.00571;

kompminmin:=1.01259;

kompmaxmin:=1.00290;

ELSIF PkPa<6233.33 then

Tmax:=438.889;

Tmin:=416.667;

Pmax:=6233.33;

Pmin:=6011.11;

kompminmax:=1.01925;

kompmaxmax:=1.00854;

kompminmin:=1.01590;

kompmaxmin:=1.00571;

ELSIF PkPa<6455.56 then

Tmax:=438.889;

Tmin:=416.667;

Pmax:=6455.56;

Pmin:=6233.33;

kompminmax:=1.02264;

kompmaxmax:=1.01141;

kompminmin:=1.01925;

kompmaxmin:=1.00854;

ELSIF PkPa<6677.78 then

Tmax:=438.889;

Tmin:=416.667;

Pmax:=6677.78;

Pmin:=6455.56;

kompminmax:=1.02608;

kompmaxmax:=1.01430;

kompminmin:=1.02264;

kompmaxmin:=1.01141;

ELSE

Tmax:=438.889;

Tmin:=416.667;

Pmax:=6900.00;

Pmin:=6677.78;

kompminmax:=1.02955;

kompmaxmax:=1.01722;

kompminmin:=1.02608;

kompmaxmin:=1.01430;

end_if;

ELSIF T<461.111 then

IF PkPa<5122.22 then

Tmax:=461.111;

Tmin:=438.889;

Pmax:=5122.22;

Pmin:=4900.00;

kompminmax:=0.99464;

kompmaxmax:=0.98775;

kompminmin:=0.99194;

kompmaxmin:=0.98542;

ELSIF PkPa<5344.44 then

Tmax:=461.111;

Tmin:=438.889;

Pmax:=5344.44;

Pmin:=5122.22;

kompminmax:=0.99737;

kompmaxmax:=0.99011;

kompminmin:=0.99464;

kompmaxmin:=0.98775;

ELSIF PkPa<5566.67 then

Tmax:=461.111;

Tmin:=438.889;

Pmax:=5566.67;

Pmin:=5344.44;

kompminmax:=1.00012;

kompmaxmax:=0.99248;

kompminmin:=0.99737;

kompmaxmin:=0.99011;

ELSIF PkPa<5788.89 then

Tmax:=461.111;

Tmin:=438.889;

Pmax:=5788.89;

Pmin:=5566.67;

kompminmax:=1.00290;

kompmaxmax:=0.99487;

kompminmin:=1.00012;

kompmaxmin:=0.99248;

ELSIF PkPa<6011.11 then

Tmax:=461.111;

Tmin:=438.889;

Pmax:=6011.11;

Pmin:=5788.89;

kompminmax:=1.00571;

kompmaxmax:=0.99728;

kompminmin:=1.00290;

kompmaxmin:=0.99487;

ELSIF PkPa<6233.33 then

Tmax:=461.111;

Tmin:=438.889;

Pmax:=6233.33;

Pmin:=6011.11;

kompminmax:=1.00854;

kompmaxmax:=0.99971;

kompminmin:=1.00571;

kompmaxmin:=0.99728;

ELSIF PkPa<6455.56 then

Tmax:=461.111;

Tmin:=438.889;

Pmax:=6455.56;

Pmin:=6233.33;

kompminmax:=1.01141;

kompmaxmax:=1.00216;

kompminmin:=1.00854;

kompmaxmin:=0.99971;

ELSIF PkPa<6677.78 then

Tmax:=461.111;

Tmin:=438.889;

Pmax:=6677.78;

Pmin:=6455.56;

kompminmax:=1.01430;

kompmaxmax:=1.00463;

kompminmin:=1.01141;

kompmaxmin:=1.00216;

ELSE

Tmax:=461.111;

Tmin:=438.889;

Pmax:=6900.00;

Pmin:=6677.78;

kompminmax:=1.01722;

kompmaxmax:=1.00712;

kompminmin:=1.01430;

kompmaxmin:=1.00463;

end_if;

ELSIF T<483.333 then

IF PkPa<5122.22 then

Tmax:=483.333;

Tmin:=461.111;

Pmax:=5122.22;

Pmin:=4900.00;

kompminmax:=0.98775;

kompmaxmax:=0.98192;

kompminmin:=0.98542;

kompmaxmin:=0.97989;

ELSIF PkPa<5344.44 then

Tmax:=483.333;

Tmin:=461.111;

Pmax:=5344.44;

Pmin:=5122.22;

kompminmax:=0.99011;

kompmaxmax:=0.98397;

kompminmin:=0.98775;

kompmaxmin:=0.98192;

ELSIF PkPa<5566.67 then

Tmax:=483.333;

Tmin:=461.111;

Pmax:=5566.67;

Pmin:=5344.44;

kompminmax:=0.99248;

kompmaxmax:=0.98603;

kompminmin:=0.99011;

kompmaxmin:=0.98397;

ELSIF PkPa<5788.89 then

Tmax:=483.333;

Tmin:=461.111;

Pmax:=5788.89;

Pmin:=5566.67;

kompminmax:=0.99487;

kompmaxmax:=0.98811;

kompminmin:=0.99248;

kompmaxmin:=0.98603;

ELSIF PkPa<6011.11 then

Tmax:=483.333;

Tmin:=461.111;

Pmax:=6011.11;

Pmin:=5788.89;

kompminmax:=0.99728;

kompmaxmax:=0.99020;

kompminmin:=0.99487;

kompmaxmin:=0.98811;

ELSIF PkPa<6233.33 then

Tmax:=483.333;

Tmin:=461.111;

Pmax:=6233.33;

Pmin:=6011.11;

kompminmax:=0.99971;

kompmaxmax:=0.99230;

kompminmin:=0.99728;

kompmaxmin:=0.99020;

ELSIF PkPa<6455.56 then

Tmax:=483.333;

Tmin:=461.111;

Pmax:=6455.56;

Pmin:=6233.33;

kompminmax:=1.00216;

kompmaxmax:=0.99442;

kompminmin:=0.99971;

kompmaxmin:=0.99230;

ELSIF PkPa<6677.78 then

Tmax:=483.333;

Tmin:=461.111;

Pmax:=6677.78;

Pmin:=6455.56;

kompminmax:=1.00463;

kompmaxmax:=0.99655;

kompminmin:=1.00216;

kompmaxmin:=0.99442;

ELSE

Tmax:=483.333;

Tmin:=461.111;

Pmax:=6900.00;

Pmin:=6677.78;

kompminmax:=1.00712;

kompmaxmax:=0.99869;

kompminmin:=1.00463;

kompmaxmin:=0.99655;

end_if;

ELSIF T<505.556 then

IF PkPa<5122.22 then

Tmax:=505.556;

Tmin:=483.333;

Pmax:=5122.22;

Pmin:=4900.00;

kompminmax:=0.98192;

kompmaxmax:=0.97693;

kompminmin:=0.97989;

kompmaxmin:=0.97514;

ELSIF PkPa<5344.44 then

Tmax:=505.556;

Tmin:=483.333;

Pmax:=5344.44;

Pmin:=5122.22;

kompminmax:=0.98397;

kompmaxmax:=0.97873;

kompminmin:=0.98192;

kompmaxmin:=0.97693;

ELSIF PkPa<5566.67 then

Tmax:=505.556;

Tmin:=483.333;

Pmax:=5566.67;

Pmin:=5344.44;

kompminmax:=0.98603;

kompmaxmax:=0.98053;

kompminmin:=0.98397;

kompmaxmin:=0.97873;

ELSIF PkPa<5788.89 then

Tmax:=505.556;

Tmin:=483.333;

Pmax:=5788.89;

Pmin:=5566.67;

kompminmax:=0.98811;

kompmaxmax:=0.98234;

kompminmin:=0.98603;

kompmaxmin:=0.98053;

ELSIF PkPa<6011.11 then

Tmax:=505.556;

Tmin:=483.333;

Pmax:=6011.11;

Pmin:=5788.89;

kompminmax:=0.99020;

kompmaxmax:=0.98417;

kompminmin:=0.98811;

kompmaxmin:=0.98234;

ELSIF PkPa<6233.33 then

Tmax:=505.556;

Tmin:=483.333;

Pmax:=6233.33;

Pmin:=6011.11;

kompminmax:=0.99230;

kompmaxmax:=0.98600;

kompminmin:=0.99020;

kompmaxmin:=0.98417;

ELSIF PkPa<6455.56 then

Tmax:=505.556;

Tmin:=483.333;

Pmax:=6455.56;

Pmin:=6233.33;

kompminmax:=0.99442;

kompmaxmax:=0.98785;

kompminmin:=0.99230;

kompmaxmin:=0.98600;

ELSIF PkPa<6677.78 then

Tmax:=505.556;

Tmin:=483.333;

Pmax:=6677.78;

Pmin:=6455.56;

kompminmax:=0.99655;

kompmaxmax:=0.98970;

kompminmin:=0.99442;

kompmaxmin:=0.98785;

ELSE

Tmax:=505.556;

Tmin:=483.333;

Pmax:=6900.00;

Pmin:=6677.78;

kompminmax:=0.99869;

kompmaxmax:=0.99157;

kompminmin:=0.99655;

kompmaxmin:=0.98970;

end_if;

ELSIF T<527.778 then

IF PkPa<5122.22 then

Tmax:=527.778;

Tmin:=505.556;

Pmax:=5122.22;

Pmin:=4900.00;

kompminmax:=0.97693;

kompmaxmax:=0.97261;

kompminmin:=0.97514;

kompmaxmin:=0.97104;

ELSIF PkPa<5344.44 then

Tmax:=527.778;

Tmin:=505.556;

Pmax:=5344.44;

Pmin:=5122.22;

kompminmax:=0.97873;

kompmaxmax:=0.97420;

kompminmin:=0.97693;

kompmaxmin:=0.97261;

ELSIF PkPa<5566.67 then

Tmax:=527.778;

Tmin:=505.556;

Pmax:=5566.67;

Pmin:=5344.44;

kompminmax:=0.98053;

kompmaxmax:=0.97578;

kompminmin:=0.97873;

kompmaxmin:=0.97420;

ELSIF PkPa<5788.89 then

Tmax:=527.778;

Tmin:=505.556;

Pmax:=5788.89;

Pmin:=5566.67;

kompminmax:=0.98234;

kompmaxmax:=0.97738;

kompminmin:=0.98053;

kompmaxmin:=0.97578;

ELSIF PkPa<6011.11 then

Tmax:=527.778;

Tmin:=505.556;

Pmax:=6011.11;

Pmin:=5788.89;

kompminmax:=0.98417;

kompmaxmax:=0.97898;

kompminmin:=0.98234;

kompmaxmin:=0.97738;

ELSIF PkPa<6233.33 then

Tmax:=527.778;

Tmin:=505.556;

Pmax:=6233.33;

Pmin:=6011.11;

kompminmax:=0.98600;

kompmaxmax:=0.98059;

kompminmin:=0.98417;

kompmaxmin:=0.97898;

ELSIF PkPa<6455.56 then

Tmax:=527.778;

Tmin:=505.556;

Pmax:=6455.56;

Pmin:=6233.33;

kompminmax:=0.98785;

kompmaxmax:=0.98221;

kompminmin:=0.98600;

kompmaxmin:=0.98059;

ELSIF PkPa<6677.78 then

Tmax:=527.778;

Tmin:=505.556;

Pmax:=6677.78;

Pmin:=6455.56;

kompminmax:=0.98970;

kompmaxmax:=0.98383;

kompminmin:=0.98785;

kompmaxmin:=0.98221;

ELSE

Tmax:=527.778;

Tmin:=505.556;

Pmax:=6900.00;

Pmin:=6677.78;

kompminmax:=0.99157;

kompmaxmax:=0.98547;

kompminmin:=0.98970;

kompmaxmin:=0.98383;

end_if;

ELSE

IF PkPa<5122.22 then

Tmax:=550.000;

Tmin:=527.778;

Pmax:=5122.22;

Pmin:=4900.00;

kompminmax:=0.97261;

kompmaxmax:=0.96886;

kompminmin:=0.97104;

kompmaxmin:=0.96746;

ELSIF PkPa<5344.44 then

Tmax:=550.000;

Tmin:=527.778;

Pmax:=5344.44;

Pmin:=5122.22;

kompminmax:=0.97420;

kompmaxmax:=0.97025;

kompminmin:=0.97261;

kompmaxmin:=0.96886;

ELSIF PkPa<5566.67 then

Tmax:=550.000;

Tmin:=527.778;

Pmax:=5566.67;

Pmin:=5344.44;

kompminmax:=0.97578;

kompmaxmax:=0.97166;

kompminmin:=0.97420;

kompmaxmin:=0.97025;

ELSIF PkPa<5788.89 then

Tmax:=550.000;

Tmin:=527.778;

Pmax:=5788.89;

Pmin:=5566.67;

kompminmax:=0.97738;

kompmaxmax:=0.97307;

kompminmin:=0.97578;

kompmaxmin:=0.97166;

ELSIF PkPa<6011.11 then

Tmax:=550.000;

Tmin:=527.778;

Pmax:=6011.11;

Pmin:=5788.89;

kompminmax:=0.97898;

kompmaxmax:=0.97448;

kompminmin:=0.97738;

kompmaxmin:=0.97307;

ELSIF PkPa<6233.33 then

Tmax:=550.000;

Tmin:=527.778;

Pmax:=6233.33;

Pmin:=6011.11;

kompminmax:=0.98059;

kompmaxmax:=0.97590;

kompminmin:=0.97898;

kompmaxmin:=0.97448;

ELSIF PkPa<6455.56 then

Tmax:=550.000;

Tmin:=527.778;

Pmax:=6455.56;

Pmin:=6233.33;

kompminmax:=0.98221;

kompmaxmax:=0.97733;

kompminmin:=0.98059;

kompmaxmin:=0.97590;

ELSIF PkPa<6677.78 then

Tmax:=550.000;

Tmin:=527.778;

Pmax:=6677.78;

Pmin:=6455.56;

kompminmax:=0.98383;

kompmaxmax:=0.97876;

kompminmin:=0.98221;

kompmaxmin:=0.97733;

ELSE

Tmax:=550.000;

Tmin:=527.778;

Pmax:=6900.00;

Pmin:=6677.78;

kompminmax:=0.98547;

kompmaxmax:=0.98019;

kompminmin:=0.98383;

kompmaxmin:=0.97876;

end_if;

end_if;

kvot:=(kompminmin*(Tmax-T)*(Pmax-PkPa)

+kompmaxmin*(T-Tmin)*(Pmax-PkPa)

+kompminmax*(Tmax-T)*(PkPa-Pmin)

+kompmaxmax*(T-Tmin)*(PkPa-Pmin))/(Tmax-Tmin)/(Pmax-Pmin);

fdens_mat:=sqrt(PkPa/5900.00*723.150/(T+273.15)*kvot);

dp:=dpcell;

if dp_rot then

 dp:=dpcell*dpcell/dp_max/dp_max*dp_max;

end_if;

q_rot_mat:=6.42441*Sqrt(dp);

fmat:=(1-0.17070E-5*expt(q_rot_mat,2)*5900.00/(P*1000.00))/0.99005

*(1+0.03390/expt(q_rot_mat,0.75))/1.00131;

q_pol_mat:=q_rot_mat*fmat;

q_pol_mat_PT:=q_pol_mat*fdens_mat;

densitet:=PkPa/5900.00*723.150/(T+273.15)*kvot*18.8508;

(*BigBlock slut/finished/Ende*)

Other Information

    Quick Links

 

 

 

 

 

 

Copyright ® 2010 Matematica  
Matematica
Processline Excel Output